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The ionic contribution to the electrical current in an electrolytic cell submitted to an external voltage linearly
increasing with the time is evaluated. The investigation is performed in the limit of small and large electric
field, in which the density of ions depends on the actual electric field in the sample. In the analysis, it is
assumed that the ionic separation induced by an external field can be described by a surface density of charge.
We show that the ions are responsible for a peak in the current, followed by a delay in the application of the
external voltage. From the analysis of the peak and its delay, it is possible to obtain information on the density
of ions in thermodynamical equilibrium, and on the mobility of the ions in the considered liquid.
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We analyze the influence of the ions present in a liquid on
the detectable current, when the cell is submitted to an ex-
ternal voltage linearly increasing with the time. We assume
that the sample is in the shape of a slab of thickness d. The
Cartesian reference frame used in the description has the z
axis normal to the limiting surfaces, placed at z= ±d /2. We
suppose that the electrodes are covered by means of an in-
sulating material of thickness L and dielectric constant �S in
such a manner that they can be considered perfectly blocking
with respect to the ions present in the liquid. The case in
which the surface layer is absent, and hence the electrodes
are not blocking, can be treated as proposed in �1�. However,
since for technological applications to avoid charge injection
the electrodes are usually covered by an insulating material,
we limit the analysis to the system described in Fig. 1. We
suppose first that the chemical equilibrium for the dissocia-
tion of impurity in ions is not perturbed by the external volt-
age, and that there is no specific ion adsorption on the sur-
faces. This assumption is valid in the limit of small external
field �2�. In the opposite limit of large external field, the
chemical equilibrium is perturbed �3�, and this case will be
analyzed later. In this framework, in the absence of an exter-
nal electric field, the liquid is locally and globally neutral.

We indicate by n0 the density of ions in the thermody-
namical equilibrium, q the modulus of the electrical ionic
charge, �B the dielectric constant of the liquid in which the
ions are dispersed, and � the mobility of the ions in the
liquid.

When an external voltage V0 is applied to the cell, an
electric force pushes the positive ions close to the negative
electrode and the negative ions close to the positive elec-
trode. Since the layers where the ions are confined are very
thin with respect to d, we consider them as surface distribu-
tion of charges. These surface densities of charge are indi-
cated by �q�, whereas the ones sent by the power supply on
the electrodes to fix the applied potential to V0 are indicated
by ±q�. The bulk density of ions, when the external voltage
is present, is indicated by n. We assume that n is constant
across the cell, as discussed in �4�. This simple model is in
agreement with a more rigorous calculation performed by
taking into account the drift and diffusion currents, as has
been shown by Scalerandi et al. �5�. Since the number of

ions is a constant, n=n0−� /d. According to elementary elec-
trodynamics, we have that the electric fields in the surface
layer, ES, and in the bulk, EB, are given by �4�

ES = q
�

�S
and EB = q

� − �

�B
. �1�

By imposing the condition 2ESL+EBd=V0, we get

q� = ���B
V0

d
+ q�� , �2�

where �−1=1+2��BL /�Sd�. It follows that

ES =
�

�S
��B

V0

d
+ q�� and

EB = �
1

d
�V0 − 2q

L

�S
�� . �3�

To find the temporal evolution of �, we have to take into
account that in a time dt the charge collected on the limiting
surface is dQ=qd�A=JAdt, where A is the surface of the
electrodes and J is the density of electrical current. It is given
by J=2nqv, where v=�EB is the velocity of drift due to the
presence of the field acting on the ions, EB. By taking into

FIG. 1. Cell of thickness d filled with an isotropic fluid of di-
electric coefficient �B. The electrodes are covered with a film of
thickness L, having a dielectric coefficient �S.
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account the expression reported above for n, we obtain for �
the differential equation

d�

dt
=

��

d
�n0 −

�

d
��V0 − 2

qL

�S
�� . �4�

By putting

�M = n0d and Vc = 2q
n0dL

�S
, �5�

and introducing the dimensionless quantities s=� /�M and
u=V0 /Vc, it is possible to rewrite Eq. �4� in the form

ds

dt
= ��

Vc

d2 �1 − s��u − s� . �6�

As is evident from the definition, �M is the maximum value
of �. It is attained when all the ions present in the electrolyte
are pushed by the electric field to the limiting surface.
Hence, s�1. The quantity Vc is a counterpotential of ionic
origin. In the following, we are interested in the analysis of
the case in which V0=Kt, and hence u=kt, where k=K /Vc. In
this case, since we have the obvious condition ��0�=0, i.e.,
s�0�=0, from Eq. �6� it follows that �ds /dt�0=0. Further-
more, since for t→	, s→1, we have also �ds /dt�	=0. The
solution of Eq. �6�, with the boundary condition s�0�=0 and
u=kt, is

s�t� = 1 +
e
t−�
/2�t2

C −��


2k
e
/2k erf�� 


2k
�− 1 + kt�� , �7�

where 
=��Vc /d2, and

C = − �1 +��


2k
e
/2k erf� 


2k
� . �8�

The electrical current in the external circuit is given by
I=Aqd� /dt that, by taking into account Eq. �2�, is found to
be

I = ��B
A

d

dV0

dt
+ �Aq

d�

dt
. �9�

In Eq. �9� the first contribution to I is the usual one due to an
ideal capacitor. In fact, CB=�BA /d is the capacity of the
bulk, and

1

�CB
=

d

�BA
+ 2

L

�SA
=

1

CB
+ 2

1

CS
=

1

Ceq
�10�

is just the equivalent capacity of the series of the capacitor
corresponding to the bulk, CB, and of the two corresponding
to the surface layers, CS /2. The remaining term in Eq. �9� is
the contribution to the current connected with the presence of
the ions dissolved in the liquid. From Eq. �9�, taking into
account that �d� /dt�0= �d� /dt�	=0, it follows that for V0

=Kt, limt→0 I�t�=limt→	 I�t�=KCeq �6�.
For a numerical estimation of the predicted effect, we

assume n0=4.2�1020 m−3, �=3.28�10−10 m2/V s, �B
=6.7��0, d=25�10−6 m, A=10−4 m2 as in �7�, L=40
�10−9 m, and �S=4�0 �4�. For the ionic concentration re-
ported above, Debye’s screening length for the liquid under
consideration is =��BkBT /2n0q2�0.1 �m�d. Therefore,
the assumption of the independence of the ion concentration
on the z coordinate in the bulk of the solution, according to
which n=n0−� /d, is justified.

Using the value reported above, if K=1 V/s we have for
the evolution of the surface charge, s�t�, and of the current in
the external circuit, I�t�, the trends reported in Fig. 2 and in
Fig. 3, respectively. From Fig. 2, it follows that s�t� tends to
1, i.e., �→�M, as expected.

From Fig. 3, it is evident that with the set of physical
parameters used in our calculations, the current presents a
peak, and after that it tends to the charging current

FIG. 2. Dimensionless surface charge density s=� /�M vs t. FIG. 3. Current in the external circuit vs t. The area under the
curve is n0qd, given in Eq. �12�. The curve was depicted for
K=1 V/s. The dotted line indicates the limiting value given by Eq.
�11�, Ilim	0.24 nA.
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Ilim = KCeq, �11�

typical of an ideal capacitor. From Eq. �9�, taking into ac-
count Eq. �11�, it follows that

n0qd = 

0

	 I − Ilim

�A
dt . �12�

Using the numerical value reported above, the charging cur-
rent is of the order of 0.24 nA, rather small with respect to
the current of ionic origin. It is small enough not to perturb
the ionic concentration.

The analysis presented above can be useful to obtain in-
formation on the density of ions and on the mobility of the
ions in a liquid by means of measurements of electrical cur-
rent. This equation can be useful to determine the bulk den-
sity of ions in thermodynamical equilibrium, by means of a
simple measurement of electrical current.

Furthermore, from the experimental analysis of the loca-
tion of the maximum of the current, one can also obtain the
value of the mobility of the ions. The maximum of I, accord-
ing to Eq. �9�, is defined by d2� /dt2=0. By indicating with a
� *� the quantities relevant to the maximum of I, we have

� =
kd2

�Vc

1

�1 + u* − 2s*��u* − s*�
. �13�

From the experimental data, t* is easily determined and so u*

and s*. Consequently, Eq. �13� allows the determination of
the mobility, which is an important characteristics for the
display applications of liquid crystals. In Fig. 4 are shown a
few I= I�t� curves for different values of the mobility. As is
evident, increasing �, t* decreases. In Fig. 5, we report the
dependence of t* on �. A curve of this kind can be used for
the experimental determination of the mobility.

Previous analysis holds only in the case in which the
chemical equilibrium relevant to the ionic dissociation is not
perturbed by the presence of the external electric field. This
means, actually, that it is valid for applied fields much

smaller than 1 V/�m. However, when this kind of measure-
ment is performed on a ferroelectric liquid crystal, the ap-
plied field is of the order of several volts per micrometer. In
this case, previous assumption is not valid and the analysis
presented above has to be generalized to take into account
the influence of the electric field on the electrolytic dissocia-
tion, as discussed in �3�. According to the model proposed by
Onsager, the density of ions depends on the actual electric
field as

n�E� = n0 + p�E� , �14�

where p takes into account the effect of the external electric
field on the electrolytic dissociation. In this framework, the
differential equation describing the time evolution of the sur-
face density of ions is, instead of Eq. �4�,

d�

dt
= ��n0 + p�EB� −

�

d
�EB, �15�

where EB is given by Eq. �3� and we have taken into account
that the actual field in the sample is EB. In Fig. 6, we show
the numerical integration of Eq. �15� relevant to the case
K=100 V/s, and p=1014 �V m2�−1, whereas the other physi-
cal parameters are the same as above. In the same figure, we
compare the behavior of � when Onsager’s effect is consid-
ered with the one in which it is neglected. From this figure, it
follows that for small t the two trends are coincident, as
expected. On the contrary, for large t the Onsager effect is
responsible for a linear increase of ��t�. In Fig. 7, the elec-
trical current in the circuit for the same situations is reported.
We note that the behaviors are the same, but Onsager’s effect
is responsible for a constant value of the electrical current
observed for large t, coming from the second term of Eq. �9�.
It is possible to obtain analytically information on the current
in the circuit for large t, by operating as follows. From Fig.
6, we derive that in the limit of large t, d� /dt tends to a
constant value. This means that, in this limit, ��t�=Ht+M.
By substituting this expression for � and V0=Kt into Eq.
�15�, we get

FIG. 4. Current in the external circuit vs t. Solid line corre-
sponds to the reference value �1=3.28�10−10 m2/V s, dotted line
to �=2�1, and dashed line to �=0.5�1.

FIG. 5. t* is the instant corresponding to the maximum in the
current. �1 is the reference mobility given in Fig. 4.
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H = At2 + Bt + C , �16�

where A, B, and C are defined in terms of H and M. From
Eq. �16�, it follows that A=0, B=0, and H=C. By solving
these equations, we obtain

M =
�Sdn0

�S + 2�pqL
and H =

�S�Kp

�S + 2�qpL
. �17�

The other solution giving H=�SK /2qL and M =0 is not im-
portant in this context, since we are looking for a solution for
which � increases with the time because p�0. By taking
into account �17� we get that, in the limit of large t, the
current tends to

Ilim�p� = Ilim�p = 0��1 + �� �S

�B
� qpd

�S + 2�qpL
 . �18�

From Eq. �18� it follows that the increasing of the current in
the limit of large t depends on p. Consequently, a measure-
ment of this quantity can give useful information on this
parameter.

We have analyzed the contributions of the ions to the
electrical current in a cell of isotropic liquid when the elec-
trodes can be considered as perfectly blocking when the ex-
ternal voltage is a linearly increasing function of the time.
The analysis has been performed in the limit of low and large
electric field. In the first case, the chemical equilibrium rel-
evant to the dissociation of impurities in ions is field-
independent. In this framework, we have shown that from
the experimental data I= I�t� it is possible to determine the
mobility of the ions and the density of ions in the sample, by
analyzing the maximum of the current versus the time and
the limiting value of the current for large t. In the case in
which the applied field is so large such that the chemical
equilibrium depends on it, the analysis has been performed
by taking into account the effect predicted by Onsager, rel-
evant to the ion formation due to the presence of the field. In
this case, we have shown that in the limit of large t, the
limiting value of the current depends on the Onsager coeffi-
cient. Hence, an investigation of the kind discussed here can
allow its determination.
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FIG. 6. Surface charge density obtained from Eq. �15� vs t.
Solid line refers to the case p�0 �Onsager effect� and dashed line
p=0.

FIG. 7. Electrical current obtained with Eqs. �9� and �15� vs t.
Solid line refers to the case p�0 �Onsager effect� and dashed line
p=0. The dotted line indicates the limiting value given by Eq. �18�,
Ilim�p=0�	24 nA, and Ilim�p�0�	176 nA. The curves were de-
picted for K=100 V/s.
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